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A METHOD OT CALCULATING BBNDINO STBBSSES BUB TO TOBSION 

By Paul Kuhn 

SUMMABT 

A method ie described far analysing bending strossee 
due to torsion In a "box with variable cross seotlon and 
loading by means of a recurrence formula leading to a set 
of equations identical in form with the well-known three- 
moment equations.  Formulas are given to deal with special 
features such as full-width cut-outs and carry-through 
bays.  In conclusion, an approximate form of the general 
method of analysis is presented that eliminates the need 
of solving a system of equations.  The simplified method 
is sufficiently accurate for moBt requirements of practi- 
cal stress analysis and may be applied without knowledge 
of the general method.  Numerical examples illustrate all 
procedures. 

INTRODUCTION 

The basic strength element of many wings is a box of 
approximately rectangular cross seotion.  Vhen such a box 
Is loaded by torques, the walls are subjected to shear 
stresses that can be calculated by the well-known formula 
for shells in torsion.  In addition to the primary system 
of shear stresses^ localised systems of secondary stresses 
are set up in the violnity of concentrated torques and of 
discontinuities of the cross-sectional dimensions.  These 
secondary stress systems are froquently referred to as 
bonding stressos duo to torsion, because their rosultants 
pro bonding moments in the planes of the walls• accompa- 
nied by the shear forces necessary to oause spanwise vari- 
ations of the bending moments. 

In aotuol wing structures, the spanwise variations 
of loading and of cross-seotional dimensions cannot be 
reprosontod very well by simple mathomatloal expressions. 
General .methods of calculating bending stresses due to 
torsion therefore use the familiar procedure of dividing 
the box into bays such that the cross-sectional dimensions 



nnd the torquos may "be assumed constant. within eaeh hay. 
The foundation for such general methods was laid by Boner 
in a comprehensive paper (reference l); subsequent authors 
h'nve followed Ebner' B lead more or less closely.. 

Numerical calculations made by Boner nnd others lead 
to the conclusion that bending stresses due to torsion 
are of practical importance only when the discontinuities 
of the loading or of the dimensions are very marked.  The 
distribution of the loading nnd the dimensions of the 
cross sections at n distance from the discontinuity have 
only a negligible influonoe on the stresses at the dis- 
continuity.  Advantage could be taken of these fncts to • 
reduce the numerical work required for estimating the max- 
imum stresses in the vicinity of major discontinuities If 
formulas were available free of Ebner's aseumption that 
no ribs exist within a bay.  Such formulns are devoloped 
in this paper by n method that combinos parts of the meth- 
ods of Ebner (reforonco l), Boissnor (reference 2), and 
ftrsedziolski (roferonce 3). 

ITor tho final stross analysis it may be desirable to 
divido tho boam Into short bays; numerical difficulties may 
thon bo encountorod in tho application of tho formulas. 
Psrallol formulas nro dorivod, thoroforo, basod on the as- 
sumption that the bays nro very short.  This nssumption 
lends to tho same rosults as tho nssumption thnt no ribs 
oxist within tho bays, which Is Ebnor'a basic nssumption, 
nnd tho formulas roproeont a special caso of Ebner's 
thoory. 

ANALYSIS 07 A BOX WITHOUT CUT-OUTS 

Q-onoral Considerations 

Synopsis of problem nnd procedure.- The problem to be 
investigated may be stated as follows:  G-iven a box beam 
such as shown in figure 1 subjected to the action of 
torques concentrated »t certain bulkheads, find the stress- 
es caused by the torques. 



shown in-figure 2.  The valla of-the. ..simplified sections 
are assumed to carry only ahear atreaaea  T,  the corner 
flanges only normal atreaaoa  <r.  She transformation lm- 
pli9B no aasunptions other than standard ones on atroBB 
distribution and is disoussed in tho appendix. 

The "box "boam under torque londs is a statically inde- 
terminate structure.  A stntioally determinate atruoture • 
is obtained by cutting the redundant members at the sta- 
tions where the torques are applied and where the. dimen* ' 
sions of the cross section change, thus dividing the box 
into a number of bays.  The four flanges are chosen as re- 
dundant members in aocordanoe with Ebner's method (refer- 
ence l).  For reasons of static equilibrium, the redundant 
foroes form a doubly nntisymmetrical group of four forcea 
X  at'each atation (fig. 3).  under the action of the 
torques  T  and the forcea  X,  each individual bay de- 
forms as indicated by the dashed lines in figure 3; the 
magnitudes of the forcea  X  nre calculated by the princi- 
ple of consistent deformations of adjacent bays. 

Two sets of formulas «re given for the Btresses in 
and the deformations of an individual bay.  The first set 
is based on assumption A  that no intermediate ribs ex- 
ist within the bay; the second set is based on assumption 
B  that closely spaced intermediate ribs exist within the 
bay.  The formulas obtained under assumption  B  are more 
general and reduce to the corresponding formulae obtained 
under assumption A  in the limit as a characteristic 
parameter  Ka  appearing in the formulas approaches zero. 
The approximate method of analysis described at the end 
of tho paper is based on assumption  B. 

Sign conventions and notations.- External torques  T 
are positive when aoting clookwise viewed from the tip. 
Forces  X  are positive when aoting in tho directions 
shown in figure 3.  Shear atreaaoa  T  are positive when 
acting in the direotion of shear stresses caused by posi- 
tive torquoB.  Normal stresses  (7  are positive when 
caused by positive X-forcos.  Tho warping deformations  ~ 
aro positive in the directions indioatod by the dashed 
linos in figure 3, that 1B, in the directions of positl 
X-foroos aoting on the outboard ends of the bays. 

vo 

A coordinate  x  is noodod only for formulas dealing 
with an individual bay.  Tho origin is taken at tho out- 
board end of the bay under consideration (fig. 3). - - 



Bays and stations aro numbered as shown in figure 4. 
Superscripts identify the force oauaing the stress or the 
deformation vhonover definite identification is desirablo. 
Subscripts  i  and  o  denote the inboard and outboard 
ends, respectively.. 

'Stresses in an Individual Bay 

Each individual bay is acted upon by three independ- 
ent Bets of loads:  a-torque  T  on each end, a group of 
forces  I, et the inboard end, and a group of foroes X0 
at the outboard end.  Formulas will be given for the 
stresses oaused by each load individually; the final 
stresses are obtained in each case by superposing the 
stresses caused by .the three sets of loads. 

• Stresses caused by torque.- The shear stresses set up 
by the torque acting on a given bay are given by the fa- 
miliar formula for shells in torsion and are, with the no- 
tation of figure 2, 

T 
Tv = 

Tn = 

2botD 

2bot. 

(1) 

The formulas are valid for bays without intermediate ribs 
(assumption A) as well as for bays with intermediate ribs 
(assumption B) .  No stresses  0" are set up in the flanges 
when a bay is loaded by pure torques. 

Stresses caused by X-forces in .a bay without interme- 
diate ribs.- A group of X-forcos acting on one end'of a 
bay sets up normal stresses <j     in the flanges and shear 
stresses  T  in the walls.  The sign convention adopted 
makes it necessary to 
the inboard end and a 
end of tho bay. 

distinguish a group X±     applied at 
group  X.  applied at the outboard 

In a bay without intermediate bulkheads, the shear 
.stresaos ca'-.seq oj  an X-group cannot vary spanwise bo- 
causo spanvise variations of the shonr stress in a bay 
can bo effoctod .only by bulkheads transferring shear 
stros'BOs from one pair of walls to tho other pair.  The 
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shear stresses "being' constant',- the-flange forces vary 
linoarly along the bay (fig. 5), and tho flange stresses 
oauBed "by.'an inboard group and by an outboard group of X- 
foroes are given, respectively, by the formulas 

ai. 

(a-x)X0 
aA 

(2) 

(3) 

The phear stresses are obtained by applying two equations 
of equilibrium. The condition ET e o applicable to any 
cross section of the bay gives 

T^bo + Tctcbc e 0 (4) 

The condition  EC B 0  applied to a flange acted upon by 
an X-force at the inboard end gives 

xi + Tb*ba - To*ca = ° (5^ 

The combination of equations (4) and (5) yields the result 

T,, = -Xi/aatt 

T0 =  X1/2at0 
(6) 

When the forces  X  are applied at the outboard end of the 
bayt the stresses are 

Tt = X0/2atT) 

Tc = -X0/2at0 

(7) 

Straaees caused by X-forceB in a bay with Intermediate 
ribB.- In a bay with intermediate ribs, the shear stress 
varies epanvise (fig. 6).  The equation of equilibrium 
EX = 0  for the flange must therefore be written in the 
form 

A H + Tb*b - TC*C (8) 

which yields on' differentiation 



A + t _b _ t 

dx      dx dx 
(9) 

The shear strains of the walls are' obtained by adding the 
strains caused "by twisting and the strains caused by warp- 
ing.  If  6  denotes the angle of twist, 

YT = + 2 di + 
2w 

+ i 4fi „ 2w 
2 dx   c 

(10) 

Elimination of •-  from equation (10), differentiation, 
dx 

end multiplication by the shear modulus  G  gives 

dx 

dTe    v^ dw 

- c  °- = - 40 — 
dx dx 

(11) 

dw   0" How — =-=- "by fundamental definition, where  B  is 

Young's modulus, and  Tc*c 
c - TDt-b  ^ aquation (4).  Sub- 

stitution of these expressions in equation (ll) and then 
in equation (9) yields the differential equation 

d3<J 8GCT 
dx3   A^b/t^ +  c/tc) 

= 0 (12) 

With the boundary conditions  (7=0  at  x = 0  and 
a = X/Aj.  at  x a a,  valid for an X-group acting at the 
inboard end of the bay, the solution of the differential 
equation is 

Xt slnh Kx 
A sinh Ka 

and by analogy for an X-group at the outboard end 

X0 sinh K(a-x) 

(13) 

A sinh Ka 

where the parameter  K  is  defined by the equation 

(14) 

K* 80 
AEU/t^, + c/tc) 

(15) 



The shear stresses caused by an X-group aoting on the hay 
may'now "be -found by -substituting tie value.,of a- given by 
formula (IS) or (14) in formulas (8) and (4); they are 

T« = 

X^K cdsh Xx 
2t-u 'sinh Ka 

X^K cosh Ex 
2tQ sinh Ka 

(16) 

Tv = 
X0K cosh K(a-x) 
St^ sinh En 

T„ = - 
XQK cosh K(a-x) 

2t„ sinh Ka c 

(17) 

Deformations of an Individual Bay 

Principle of calculation.- Under t 
torquos and of the ^rcaps of X-forces, 
tions of an inaiviou^l bay wp.rp out of 
plpros (f.1^» •": ) ,  1'JJ;? mn^nitude  w  of 
calculated by ZJIO   method variously call 
nal work, method of dummy unit lending, 
work, etc.  Thie method involvoB throe 
tho ntroasüp a     and  T  caused by z'ao 
calculated.  Second, p. force or a systo 
(unit force) is applied in the directio 
tion sought, ind thn otrossos  Cf   and 
forco  U  are calculated.  Third, the d 
culated by the principle that tho extor 
tho unit forco must equal the intornal 
virtue of the existence of the unit for 
is str.tod in tho equation 

he action of the 
tho end cross sec- 
thoir original 
tho warping will be 
ed method of inter- 
method of virtual 
operations:  First,' 
spoiled loads are 
m of forces  U 
n of tho deforma- 
•p*  caused by the 
eformation is cal- 
nal work done by 
enorgy stored by 
ce; this principle 

Züi •im dV (18) 

where  7  is tho volume of the stressed material; the sum- 
mation sign designates that  U  may be a group of forces» 



'The warping of a cross aectl 
rioal (fig. 3). The dummy unit 1 
particular problem consist theref 
rioal groups of four forces U s 
chosen as the redundancies of the 
system. The stresses caused by t 
can therefore he calculated by th 
caused by X-foroes; ere must be 
the signs in agreement with the e 

on is doubly antisymmet- 
oadings employed in this 
ore of doubly antisymmet- 
imilar to the X-groups 
statically indeterminate 

he dummy unit loads  U 
e formulas for stresses 
taken, however, to use 
ign conventions. 

Warping caused by torque.- The »tresses caused by a 
torque  T  acting on a boy «re by equation (l) 

Tv = 

T„ = 

Pbot^j 

?,bctc 

(19) 

In ordor to compute tho warping at the outboard end of tho 
bay, a duany unit load consisting of four forcas  U  1B 
introduced «t tho outbcird ond.  Under the Assumption that 
no intormodiate ribs exist in tho bay, tho strosses rU 

and rU 

Etituting 
are 

caused   by  these  U-fcrces   can  be   computed  by   sub- 
U  for in formulas (3) and (?).  The results 

u = u(a-x) a    = 

U 

Aa 

U/2at, 

T u = -U/2at, 

(30) 

The expressions for a,   t %   or   ,   and  T  given by formulas 
(19) and (20) «re now substituted in equation (18) and 
give 

4Uw0   a   2 
/ 
i=0 

x=a 

FlbTtT iaTT ****' 

x=»a 

+ 2 r   i _*_ r. -1-.) 
j G  3bctc   \     3at0/ 
x=0 

ct/»di 



9 

which yleids'"on integration 

vw-o-sfcot-o     (ai) 

This derivation of the formula vas given for the Bpeolflo 
case of warping at the outboard end of a bay without In- 
termediate ribs.  She formula la not reetrloted to this 
case, however; It applies to bays without or with Interme- 
diate ribs» and It gives the warping at the Inboard end as 
well as at the outboard end.  This fact can be' verified 
easily by substituting the proper stresses  TU  In equa- 
tion (18) and Integrating; It can als« be deduced directly 
fron the fact that the shear stresses caused by a torquo 
are not affected by lntormodlate ribs. 

War-pine oauBod by X-foroos.- Tho warping at the out- 
board end of a bay caused by an X-group acting pt the out- 
bc»rd end may be written In the form 

w o pXD (22) 

where the coefficient  p  Is obtained by applying equation 
(18) In the form 

to   G + 2 /    —^  ct0 dx 

By substituting In this equation the proper formulas for 
the stresses and Integrating, the coefficient  p  Is found 
to be, for a bay without Intermediate ribs, 

p c _JL_ + -i-C-L + S-) (33) 
*   3AB   8Ga UD   tc/ 

and, for a bay with Intermediate ribs, 
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= -±—    /coth Ka 55 \ 
2KA3B    \ sinhs  Ka/ 

(coth Ka + —-?§• ^ |fi + -S.N 
\ sinh3.Ka/ V*b       *c/ 16-Ö 

_.  coth 'Ka' 
KATB 

(24 

The warping at   the   inboard  end  caused by an  X—group at   the 
inboard   ood. is 

wi   =    -P*i (25) 

where  p  Is given by expression (2?) or (24) t as the case 
may be« 

The warping at the inboard end of a bay caused by an 
X-group acting at the outboard end of the bay nay be writ- 
ten in the form 

wi = <lXo (26) 

By substituting the proper stress formulas In equation (18) 
and integrating, the coefflciont  q  is found to be, for 
a bay without intermediate ribs, 

and, for a bay with Intermediate ribs, 

q  = - __1    /_ 1 + Ka_cosh_Ka\ 
2KAB   ^    Bln]l  Ea sinh3   Ka / 

+ —{-     1 +  Ka  cosh Xa \/b_      _c\ 
16&lsinh Ka sinhs  Ka    J^       tcJ 

EAB   sinh Ka '28' 

The warping at the outboard end of a bay caused by an 
X—group acting at the inboard end is given by the expres- 
sion 

»o = -<lxi (29) 
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The general formula (84) for -a bay vith many ribs re- 
duce B "to the' special formula? (23) -for a bay-without-in- 
termediate ribs in the limit when the parameter  Ka  ap- 
? roaches aero.  Similarly, formula (38) reduces to formula 
87) whan Ka approaches sero.  When the parameter  Ka 

booomee very large, formulas (84) and (38) Bimplify to 

o -")«-!_ (30) 
./ KAH 8KAJB        160  Vjt^        t0/ KAB 

; ', ' q  =   0 (31) 

Formulas (30) and (31) are sufficiently aocurate for most 
practical purposes when  Ka > 5  end may be used a.e approx- 
imations vhen  Ka > 3." 

In order tc simplify tho numerical evaluation of for- 
mulas (34) and (28), thoy may be written in the form 

p = _JL_ 0» + -A- (±-  + -M C» (33) 
*   3A3      8G* \tb   toy 

8Ga ^tD   tc; 
1  =   - 6A3 

Tho coofficionts  C', C", D', and Dn  are given in figure 7. 

Recurrence Formula for the Calculation of I-Toroes 

Derivation of recurrence formula.- According to the • 
principle of consistent deformations, the warping at the 
inboard end of one bay must be equal to the warping of the 
adjacent outboard end of the next bay.  The warping at 
the inboard end of bay  n,  that is, at station  n,  equals 

*ni - *n* " Pn*n + 3nXn-i * ^ 

In this expression, the subscript's  n  and. .(n-i)  of the 
forces  X  designate the stations at which the forces act, 
whereas the subscript  n  of  w, p, and q  designates the 
bey under consideration.  The warping nt the outboard end 
of bay  n+i  equals 
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w#   v*v-T+p    X  - q    X A,        (35) (n+i)0   .n+i   *n+*  n  ^n+i  n+i 

Equating formulas' (34) and (35) and rearranging the terms 
yields the reourrenoe formula 

«In xn-i - <Pn + Pn+i>Xn + *n+i Xn+i "  ~wnT + wn+iT   (36> 

By giving  n  successive values from  n = 1  to  nor, 
there is obtained a set of equations, each of which con- 
tains three of the redundant force groups  X»  There is 
one equation for each station except station  0  at the tip* 

Boundary conditions.- The tip of a "box beam is normally 
free from axial loads or restraints; the forces  X  at the 
tip are therefore zero, and the first equation of the sys- 
tem is 

- (Pi + Pa) Xi + qa
xa = -*iT + WaT (37) 

When a beam is attached to a rigid foundation (fig. l), 
the foundation may be considered a bay  (r + 1)  having in- 
finito shear stiffness and infinite axial stiffness, there- 
fore 

wr+i
T " Pr+i " *r+i " ° 

and the last equation of the system becomes 

' <Lr Xr-i ~ PrXr = "»r* <38^ 

The condition of a rigid foundation may exist in a practi- 
cal structure by virtue of symmetry (fig. 8). 

The torque reaction is frequently located at a dis- 
tance  d  from the plane of symmetry (fig. 9), and the 
forces  Xr  are transmitted from the root of cne *ing to 
the root of the opposite ving by oarry-through membors 
having axial stiffnesses  AB.  The last equation of the 
system for this case can be written by inspection as 

*rXr T - PJXT. = -W,.T <39> r r—i    r  r    r 

where 

Pr* =Pr
+A (40) 
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AftlLYBIfc OT A BOX WITH TOIrL*WI®TH 0T7T-OUTS 

QeneTal considerations.- In actual box beams, full- 
Width out-outs are often necessary (fig. 10).  If the region 
of the out-out 1B considered a "bay and If the standard pro- 
cedure Is used for rendering the structure statically de- 
terminate by cutting each flange at each station, it will 
be found that the remaining structure is incapable of car- 
rying load. The out-out region oan transmit torque only by 
two-spar or beam action of the two active walls.  (The wall 
opposite the out-out is inactive beoauBo it oan carry no 
shoar loads for reasons of static equilibrium.)  Beam action 
requires active participation of the flangeB; it Is there- 
fore not. permissible to out them at.bcth ends of the out- 
out region, and the prooeduro of rendering the s.tructuro 
dotermlnato must bo laodifiod.  The modification consists in 
combining the cut-out region with the adjoining complete 
box section either on tho inboard side or on the outboard 
sido into a combination bay (fig. 11) and cutting tho flangeB 
at tho ends of the combination bay.  As indlcatod by figure 
11, a combination bay will bo tormod "type I" when the two- 
spar part is outboard and type II when tho two-spar part is 
inboard. 

Stresses and deformations of a combination bay, type I.- 
In the two-spar part of a combination bay of type I (fig. 
11), the stresses are found by statics and are given by the 
equations 

(C to D)     '(41) 

Te «= -i-       • (0 to D)      (43) 
bot0 

The formulas for the stresses in the box part of a 
combination bay and for the warping of the entire bay de- 
pend on the construction of the box part and will be given 
as before under assumption A (only end bulkheads exist) 
and assumption B (many intermediate ribs exist).'  Under 
assumption A, the formulas for the stresses are 

or-r^L + ift) (i -^f^        (Dtol)      (43) xAbo   A r \   a/  aA 
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Tb =  2bctt 
C1  + 1)+-^-~  TT-      (D to B)      (44) \   a/  2at-b   2atb 

T0 =  ^V f1 " ~)  " ^S- + ÖT-      (» to •)      (45) 0    2bctQ V   a/   2atc   2atc 

Under assumption B, the formulas for the stresses are 

• Td   Xn\ slnh K(a-x)   X, slnh Kx  .      .      .  . 
a  = [ + -2-)    + -i-    (D to E)      (46) 

\Abo  A /   slnh Ka    A  slnh Ka 

m   (~      cosh X(a-xn   X K oosh K(a-x) 
= —±   l + Kd    + -2  

D   2hot1) L        slab- 
Ka _f   3tt   slnh Ka 

X*K cosh Ex 

Tv = 

2tt sinh Ka 
(D to 3)      (47) 

T   i 
T„ = - .   1 - Kd 
c   2bct„ sinh Ka 

cosh K(a-xp   X^E.'cosh K(a-x) 

2tc sinh Ka 

X.K cosh Kx      ,_ ± . 
+ -± -——      (D to E) 

2tQ sinh Ka 
(48) 

The formulas for the warping of a combination hay may he 
written in a general form valid under assumption A  as well 
as under assumption  B  by using the coefficients  p  and 
q  previously introduced.  Warping oaused by torque is 
given by the formulas 

T    T.   Td L  Td
a fAO\ w.i = w + p — +  —• (49) 0 * be   2bcAE 

w* = wT + q EA (50) 
be 

The quantity  w   is calculated by formula (2l).  The co- 
efficients  p  and  q  are calculated for the box part of 
the combination bay by tho proper formula for assumption 
A  or  B,  as the case may be,  The ter.ms with  p  and  q 
in formulas (49) and (50) arise from the fact that the 
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torque applied at the two-spar end oreatea an X-group hav- 
ing a magnitude Td/bc at the Junction "between the two- 

• spar part, and the box part.  She last term in* formula (49) 
represents the deformation of the flanges In the two-spar 
pnrt; the values of A and 39  should, therefore, be un- 
derstood to bo the average Values In the two-spar region. 

Tho formulas for warping oaused by X*groups are 

•-  »oB P'xo - <l*i <B1> 

wi * l^o ~ pXl (52) 

whore  p1  is glvon by formula (40). 

Stresses and deformations of n combination bay, true 
II.- Eor a combination bay of typo II (fig. ll), tho for- 
mulas for' shear et-rossos j°.ro the same as for a bay of 
typo I.  She formulae for flange atressos and for warping 
aro replaced by tho following formulas: 

Td  /    x\  X< 
" - - ns C1 -1) + r- (» to i)      (es) 

/      Td       XjX   Binh  Kx    XQ   Binh  K(a-x)      ,_   ^     _. .. 
V.      Abo    A /   Binh  Ka A   Binh  Ka 

WT   =  WT   +    "Id (56) 
° bo 

(57) 

(58) 

(59) 

Modifications of the roourronoe formula.- Tho partic- 
ular naturo of a combination bay makoe it noooeeary to 

w  *..   WT   +       Td  + 
*.                     *  be 

Tds 

2boAS 

wo.B  ?Xo -  1xi • 

wi   c  1Xo -  P'Xi 
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modify "Bli'ght-ly the two equations in whioh-:tho doforma- 
tion at onp' end "of the combination Day 1B equated to tho 
do format Ion of the adjoining bay.- Ön tho assumption 
that the combination bay is the  mth- bay of the boam, tho 
modifiod equations p're, for a bay of typo I, 

«Im-iV-a ~ <-Pm-i+Pm'> Xm-i + *mXm = -wm-iT + wm0
T     (60> 

°-mXm-i - <Pm+PQ+i> 
x
m + 1m+i

Xm+i c -"*{*   + wm+iT      <61> 

»\nd, for a bay of type II, 

<lm-iXn-a - (Pm-i+Pn5 Xm-i +' <lmZm = -wm-iT + wa0
T      <62> 

1mXm-i- ~ (Pm,+Pm+1> 
Xm + 1m+iXn+i e -»n^ + wm+iT     <63> 

The difforcnoos fron tho standard torn consist in tho 
"ppoaranco of tho tern  p1  instead of  p  in two places 
and in tho appoaranco of two distinct torus for the torquo 
warping at tho outboard ond and at tho Inboard ond of tho 
combination bay. 

APPE0XIMAT3 METHOD 03T ANALYSIS 

Calculations on typical wing structures havo shown 
that tho bonding strossos duo to torsion aro soldom coro 
than about ono-tonth tho direct bonding stresses.  Coneo- 
quontly, an accuracy of 10 porcent in tho calculation of 
bonding strossos due to torsion will givo an accuracy of 
pbout 1 porcont on tho total strossos, which lb anplo for 
stross analysis.  In nost practical casos, thon, tho sin- 
plifiod nothod of analysis doBcribod horo is sufficiently 
accurato; casos In which a moro acourato analysis by tho 
general nothod is advisablo can bo rocognized by inspec- 
tion.  Reference nay be nado to tho section ontitlod 
"Gonoral ConsidoratIons" for sign conventions and other 
preliminaries. 

A-D-proilmate analysis of a box without cut-outs.- The 
actual cross sections of tho box (fig. l) are transformed 
Into idealised sections (fig. 2) by the method discussed 



17 

in the appendix^;. • The major discontinuities of the oross» 
sectional dimensions and of the torque loading are lo- 
orted "by inspection .,(wing root, looatidne-of wing engines, 
location of landing gear!.• Tor any given discontinuity, 
the quantities X, p, and v'  are computed by the formulas 

X* 

P 

8<J 
AE .(.b/t^ + o/tQ) 

2KAB 16\ tv   t./   XAB 

S-ha \tv " t_/ 

(15) 

(30') 

(21' ) 

where  T 
dientes t 
manning o 
figure 2. 
'•culnted: 
just outb 
subscript 
ity.  Po* 
plane of 
the qunnt 

is the appli 
hat the warpi 
f the other n 

• Two.vnlues 
onei   denoted 

oard of the d 
i,  for the 

a root Bocti 
a symmotrioal 
ltios  Pj  an 

ed torque and the superscript  T  in- 
ng  w  is caused- by the torque; the 
onstandard • symbols is explained by 
of each of those quantities are cal- 
by the ' subscript,  o,  for the region 
iscontinuity, pad one, denoted by the 
region Just inboard of tho continu- 

on rigidly fixed, or for tho contral 
box loaded symmetrically (fig. 8), 

d- wjT  become aero. 

Tho flange forces at tho discontinuity aro calculated 
by "the formula 

X = 
w T .. W,T wo wl 

*o + pi 
(64) 

from which the flange stresses follow as  (T a  X/A.  The 
shear stresses Caused by tho discontinuity are calculated 
by tho formulas 

To = 
xx_ 
2t„ 

(65) 

To those shear.stresses caused by thp discontinuity must 
bo'addod the shear stresses caused by the direct action of 
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the torque, whioh-aro given by the. bnaio formula for 
shells in torsion 

TC = 

Shct-jj 

T 
3bct„ 

(1) 

Tho VRIUOB of tho strossos a     and  T  p.t a distance  x 
from tho discontinuity pro obtained by multiplying tho 
strossos givon by formulas (64) and (65) by tho factor 

e   .  This factor may be used in the following manner to 
indicate whether the approximate method is sufficiently 
accurate in a given case. 

The rpproxlmate method is- based on the assumption 
that the stresses caused by a given discontinuity are neg- 
ligible at the location of the next discontinuity.  If 
an accuracy of 10 peroent is considered suffioient as sug- 
gested, the approximate theory is sufficiently accurate 

when  e~ p' <  0.1,  where  a  Is the distance between two 
successive discontinuities along the span.  In practice, 
the specified relative accuracy need be maintained only 

Ka for the maximum stresses.  The criterion  e    < 0.1  need, 
therefore, be met only for the region between the discon- 
tinuity causing the largest bending stresses due to tor- 
sion (usually the root of the wing) and the nearost dis- 
continuity. 

The flange forces  X  at the root of a wing with a 
carry-through bay (fig. 9) are obtained from the equation 

(»+ S)x - •* (66) 

where  d  is the length of a carry-through momber as de- 
fined in figure 9 and  A .is its cross-sectional area. 

Ap-proximate analysis of a box with cut-out.- When the 
discontinuity being investigated is the Junction between 
a box region and a region with P full-width cut-out (two- 
spar region), formula (64) must be replaoed by more com- 
plicated formulas containing the properties of the two- 
spar region as well as the properties of both adjoining 
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-b-QX.Tce-gi^ms* Two formulas are necessary,, one giving tie 
forces  Z0  at the outboard end of the two-spar region, 
the other one giving the forces  Z^  at the inboard end of 
the two-spar region.  The formulas are 

- (p. • PI • s) *. - -.* * «i* • Pi a.- &   <s7) 

-(»„•• pi • S) *--.*••**-»• 3-fe    (S8) 

where  d  ie the length of the cut-out and  A  the area of 
a corner flange in this region. 

It may be noted that formulas (30') and (21') differ 
by the factor  0  from the corresponding formulas (30) 
and (21).  The modified form given here is obtained by 
eliminating the factor  l/G  and replacing the factor  1/3 
by  G/E.  This procedure is permissible if it is applied to 
each of the quantities  p, p' , q, and v,  beoause the fac- 
tor  l/G-  can be canceled on both sides of the formula for 
the flange forces.  The modified form is more suitable for 
numerical v/ork than the original form. 

NUMERICAL EXAMPLES 

Tho numerical examples «ill be based on a box beam 
with the following properties: 

b,  inches     60 
o,  inohos     10 
tD, inch    0.040 
t0, inch    0.080 
A,  square inches 3.00 
Total length, inches    300 
(J/E    0.385 

A torque of 120,000 pound-inches is applied in all oases. 
Tor examples of beams with variable cross section, the 
values of  t^,  tQ, and A  in the outboard half of the 
boam will be assumod to bo half as largo as the basic val- 
ues Just given.  In order to simplify tho calculation of 
the quant It JOB  w, p, p', and q.,  the factor  l/O  will al» 
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vi\ye  be omitted, and the factor  l/S  will be replaced by 
G-/1  as dlecuBaed In the •preceding section. 

Bxanrole 1.» The "box Is built In at the root and has 
only one bulkhead at the tip.  ITo Intermediate ribs ex- 
ist.  The -torque Is applied at the tip.  Find the stresses 
In the' box. 

The entire box constitutes a single bay, because no 
bulkheads or ribs exist except at tho tip.  There is only 
one unknown Xx  which acts at the root.  Tor a single un- 
known, the system of equations reduces to the single equa- 
tion ' 

- *iPi - -WiT 

The value of v^     Is, by formula (2l), 

T  '  130000    /_6P_ _-_l£N m   3    5 
1    8 X 60 X 10 \0.040   0.080/ 

The value of pL  1s, by formula (23), 

- 500 * 0.585 
Pl     3 X 3.00 

The solution 1B 

+ —1—  (-i°- + -A°-J) = 13.51 8 X 300 \0.040   0.080/ 

r     =  34575 B. 254<) poTmaB 1   13.51 

Q- s 3540 - 847 pounds per' säuere Inch 
       3.00 • 

From tho maximum veiuo at.the.root,-the flango etroBsos 
decrease linearly to zoro at tho tip. 

The basic 'shear stresses caused by the torque are, by 
formula (l), . 

T. te  120000 •  _ 2500 pounds per square Inch D   2 x 60 X 10 x 0.040 * 

T„ =  120000  _ 1250 pounds per square Inch c   2 x 60 x 10 X 0.080 
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The   sheaf   stresses   caused "by- the  I-foroe  are,   "by  formula 
(6), 

2540 
'TT> = ~ 2 X 300 X 0.040 = - 106 P0UndB P6r BqUare lnCh 

To B     2 x BOO4? 0.080 = 53 P0UndB Per B(1Uare inCh 

The final chear stresses are therefore 

T. = 2500 - 106 = 2394 pounds per square inch 

T  = 1250 +  53 = 1303 pounds per square inch 

Exam-pie 2.- The "box is divided into four Days "by buljc- 
heads, but no intermediate riDs exist. The torque is ap- . 
plied at the tip.  Find the stresses in the box. 

3y formula (2l), 

wiT = waT = W3T = W*T = 34,375  (as in example l) 

By formula (23), 

p  „ p  . 75X0,385 + _L-  f—£0_ + _10j\ a 5.91 
**   *a   *3   *4   3 x g.00   8x75 \0.040  0.080/ 

By formula (27), 

75x 0.785 +_W  60 +      10 \ = 1>102 
3.00  8X75 \0.040  0.080/ 

The system of equations for Z  is therefore: 

- (5.91 + 5.91)XX + 1.102Xa = -34,375 + 34,375 

1.102Xi - (5.91 + 5.9l)Xa + 1.102X3 = -34,375 + 34,375 

1.102Xa - (5.91 + 5.91)X3 + 1.102X4 = -34,375 + 34,375 

I.IO2X3 - 5.91X4 = -34,375 

The solution of this system is 

Xx = 5 pounds 
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Xa = 52 pounds 

X3 = 556 poundB 

Xa, = 5920 pounds 

The shear stresses in the root hay cnused "b7 the X- 
forces are, "by formulas (6) und (?), 

^ 5130  +  556  B _ ag4 pound 
^     2 X 75 X 0.040   2 X 75 x 0.040 .„„«,.« inn* square men 

5920 556 AArt T  —   — = 447 nounds "Der Tc     2. X 75 x 0.080   2 X 75 x 0.080      *qupre jJoJl 

The final shenr stresses in the root hay are therefore 

T-jj = 2500 - 894 = 1506 poundB per square inch 

T  = 1250 + 447 = 1697 pounds per square inch c 

Figure 12 shows graphically the spanwise variation of 
the flange forces for this "beam and for "beams divided into 
n = 1, 2, and 3 "bays,  as well as for a beam with many 
bulkheads, which will be analyzed in the next example.  It 
may be noted that the flange force at the root obtained in 
this example for a bulkhend spneing of 75 inches differs 
only by about 12 percent from the corresponding value for 
the box with infinitely many bulkheads. 

Example 5.- The box has a tip bulkhead and many inter- 
mediate ribs.  The torque is applied at the tip.  Find the 
stressos in tho box. 

m 
of w   is the same as in the preceding examples.  By for- 

The entire box is considered a single bay.  The valuo 
rT  is 

mula (15), 

Is = 8 x Q,g85 _ 0.000632 

therefore 

3 x 1625 

K  = 0.0251 

Ka = 7.53 
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By 'formula "(30);- 

3  0.385  + 0.0351 X 1635 = ß 1X 
3 X 0.0351 X 3.00 16 

and, "by formula (22), 

WT   34375 
Xx = — «=  B ••, = 6740 pounds 

The spanwise variation of the X-force is calculated by for- 
mula (13) 

X = X, gjnh Ka; 
1 ainh Ka 

The shear stresses are obtained "by combining the shear 
stresses caused "by torque given "by formula (l) and the 
shear stresses caused "by Xx  given "by formulas (16).  Fig- 
ure. 13 shows the stresses in graphical form. 

Example 4.- The "box has end "bulkheads and many inter- 
mediate rihs. The torque is applied at midspan. Find the 
stresses in tho box. 

3y formula (2l), 

»iT = 0 

va£ = 34,375     (See   example   1.) 

From  example  3, 

K = 0.0251 

Xa = 0.0251   X   150   =   3.76 

By  formula   (24), 

m  0.385   [     1        _        3.76    I 
P*   = Pa   "   2  x   0.0251   x   3.00 Jo.999  "   (ai-.B)"J 

0.0251   x   1625  f     1 3.76       j       _   _ ,   , 
+      1    + -; Tä I  =   5.11 16 [0.999 (21.5)aJ 
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By  formula   (28) , 

<1,   = q.s =  1 3 2 
0.385    r      1       +  3.76   XL81.5~[ 

X 0.0251 x 3.00 L 21'5     (21.5)3  J 

+ 0.0251 x 1635 r 1   + 3.76 X 21.5~| _ Q  3g 
13       \jl.5 (31.5)3 J " 

The system of equations obtained by applying the recurrence 
formula is therefore 

- (5.11 + 5.1l)X1 + 0.238Xa = -0 + 34.375 

0.238X3^ _ 5.11X3 = -34,375 + 0 

The solution is    Xx = -3510 pounds 

X3 =  6560 pounds 

Figure 14 shows the final stresses in graphical form. 

A comparison of figures 13 and 14 indicates that the 
stresses at the root change very little when the spanwise 
location of the torque changes from the tip to midspan. 
The local stross peaks at the midspan torque .?re much lower 
than the peaks caused at the root "by the samo torque. 

Examples 5. 6. and 7.- Tor the following three oxrimplos, 
only the final results are shown in graphical form.  It is 
assumed in all three examples that there are many intermedi- 
ate ribs. 

Figure 15 (example 5) shows the stresses in a "box of 
constant cross section with many ribs, subjected to the 
action of fivo equal torques ovonly spaced along the span. 
The sum of the fivo torquo3 is oquil to the torque of 
120,000 pound-inches used in the provious oxamples.  The 
stressos at tho root aro noarly oqual to thoso calculatod 
in oxamplos 3 and 4, showing again that tho root stressos 
depond chiofly on tho total torquo at tho root and vory 
littlo on the distribution of this torquo. 

Figure 15 (oxamplo 6) shows, tho stressos in a box under 
tip torquo when tho thickness  t'^  and  tQ  and the flange 
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aroa^A  In tho out "board half aro roduood to one-half 
tholr" "basic valuosT"" The "discontinuity in tho dimensions 
causes local stress peaks. 

Figure 17 (example 7) shows the stresses in the box 
of the preoeding example when the torque is applied at 
midBpan. 

Exp.nrple 8.- The "box of example 3 ia attached to a 
carry-through bay (fig. 9); the length of this bay is 
d = 30 inches,  the cross-sectional nrea of each memher 
in it is  A = 3.00 square inches.  Find the X-foroe at 
the root. 

From example 3, 

p = 5.11 

wT = 34,375 

q = 0 

By formula (40), 

i         =   in     ,   30   X   0.385        _   nc p'   =   5.11   +  j-jjg   =   8.96 

Ey   formula   (39), 

-8.96X1   =   -34,375 

Xx = 3840 pounds 

Comparison with example 3 shows that the presence of the 
carry-through bay reduces the maximum flange force by 
ahout 40 percent. 

Example 9.- The "box of example 3 has the top cover 
and the "bottom cover removed over the region from  x = 150 
to  x = 180 inches from the tip.  Find the X-foroes along 
tho span. 

Tho two-spar rogion will bo combined with tho region 
"betwoon it and tho root to form a combination bay of type 
I.  3y formulae (34) and (28), 

p1 = 5.11       qx = 0.224 

pa = 6.06       qa = 0.502 
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By formula (40), 

By formulas (49) and (50), 

wQ  = 34,375 + 30,350 + 11,540 = 76,265 ao 

wa  = 34,375 + 3,010 = 37,385 

By formulas (60) and (61), 

-(5.11 + 8.91)2! + 0.502X3 = -34,375 + 76,265 

0.505X1 _  5.10X3 = -37,385 

The solution of these equations is 

Xx = -2735 pounds 

Xa =  7120 pounds 

The  X-force at the junction between the two-spar part 
and the box part of the combination bay is obtained from 
formula (4l) after multiplying through by A: 

X = 5Q * 1300°° - 2735 = 3265 pounds 
60 x 10 

The spanwise distribution of the X-force is shown in figure 
18. 

Sxam-ple 10.- Solution of example 9 by the approximate 
method. 

3y formula (15), as in example 3, 

E = 0.0251 

By formula (301), 

0.385 
P = 2 X 0.0251 x 3 

_ + 0-0251 /_60_ + _10N m 

.00     16   \0.040   0.080/ 
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By  formula   (21'), 

'  WT   =        130000 (      60     _        10  \   .  34,375 
8   X   60  x   10\0.040        0.080/ 

furthermore, 

d& _ 30 X 0.385 _ 3 85 
A3      3.00       ' 

T£ = 19QQ0Q X 3Q B 6000 
Do     60 x 10 

p li = 30,560 
DO 

TAfö- = ll.SEO 
2bcA3 

At the root, "by formula (64), with  p^ = 0 

-5.11X = -34,375 

X = 6725 pounds 

At the outboard end of the two-spar region, by formula (67), 

- (5.11+5.11+3.85)X0 = -34,375 + 34,375 + 30,660 + 11,550 

X0 3 -3000 pounds 

Similarly at the inboard end, by formula (68), 

X^ = 3000 pounds 

In this particular caao,  X^  is oqual to  X0  because the 
box inboard of the two-spar region has the samo dimensions 
and the same torque loading as the box outboard of the two- 
spar region. 

At a station 50 inchos from the root, tho valuo of  X 
y the factor  e""Er: 

XB0 = 6725e~1*a5B = 1915 pounds 

is reduced by the factor  e""'""5- 
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At the same station, there is a contribution from Xj . 
The distance from X^  equals 70 Inohes; therefore, 

X50 = 3000e-1'757 = 518 pounds 

The total force at this station is, therefore, 

XB0 = 1915 + 518 = 2433 pounds 

The values of  X  obtpinod 137/ the approximate nethod are 
shown as circles in figure 18. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, VP. 

APPENDIX 

THAxTSFOHHATIOH OJ ACTUAL BEAM SECTIONS INTO 

IDEALIZED SECTIONS 

If the web of a plate girder is assumed to furnish no 
contribution to the bending strength of the girder, the 
section modulus of the girder is given by the expression 
hAy,  where Ay  is the cross-sectional area cf a flange. 
The section modulus of the web acting alone is given by 

1 3 the oxprossion —h t.  The soction modulus of the entire 
6 

girdor is 

Z = h^Ay + i-ht) 

The actual girdor may thcroforo be roplacod for tho purpose 
of computing oxtromo fibor strosses by a fictitious girdor 
having a wob carrying only she«»r stresses and a flango hav- 
ing an aroa oqual to [Ay + -i-ht j.  This substitution is es- 

pociplly usoful whon four girdors are combined to form a 
box, bcoauso tho condition of continuity of stresses along 
tho ocLgos is then automatically fulfillod.  Tho fictitious 
flango aroa becomos, for this case,  Ay + 7-btv + 7-ct0. 6      6 
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Whon longitudinal stringers aro rlvoted to tho wob, 
tho sa'mo substitution may "be" u sod if  ht  is understood to 
moan tho cross-sectional area of all material offootivo 
in "bonding, oiolueivo of the concentrated flanges thorn- 
salvos.  Care must ho taken, however, to use reduced areas 
where the stringers are interrupted by cut-outs. 

fhe thickness of the fictitious weh cnpahle of carry- 
ing only shear stresses may he made equal to the actual 
thiokness of the weh.  This method is approximate, but it 
is sufficiently accurate in most oases.  When the web forms 
diagonal-tension fields, on nppropriate correction must be 
made to the shear modulus. 
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Figur» I.- Box beam under toraue loads. Figured-Free-body sketch of individual bay. 
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